Nelissen Hilde

Nelissen Hilde - Group leader
Joined the group in 1997

My research career has focused on the central biological question: How do growth processes determine final plant organ size? Initially, I approached this using molecular biology studying Arabidopsis leaf development. As my interest shifted towards applied research, I redirected my focus to maize. What started as translational research to bring knowledge from Arabidopsis to crops and from the lab to the field, gradually developed into a research line with the goal to decipher the instructor networks that govern leaf size, organ growth and ultimately yield in maize. Because plant organ size control is an important yield component that is also severely impacted by climate change, our ultimate goal is to deepen our understanding of the growth-regulatory networks to enhance our success rate to achieve climate-resilient crops.
 
As lecturer of ‘Plant Research Technologies’ and ‘Plant Yield’ within the Advanced Master in Plant Biotechnology, I get the opportunity to enthuse Master students about the possibilities of plant biotechnology to change agriculture.
 
My team and I set out to create an inclusive atmosphere that stimulates critical thinking, creativity, team work, personal development, job satisfaction, personal fulfillment, mutual respect, scientific transparency and research ethics.
 
 
 
 

Beauchet Arthur

Beauchet Arthur - Postdoctoral fellow
Joined the group in 2022

I am a Post-doctoral researcher in plant cell and molecular biology in the field of organ growth, crop productivity. After I obtained my master degree of plant biology and biotechnology at Bordeaux university, I graduated with my PhD in 2022 where I studied the molecular mechanisms controlling Tomato fruit organogenesis and fruit size determination in the Flowering, Fruit Development and Environmental Constraints team at INRAe. My PhD consisted in studying the functional role of FW2.2, the protein associated to the major QTL governing fruit weight in tomato. I demonstrated that FW2.2 is associated with Plasmodesmata and is involved in cell-to-cell communication by modifying the callose deposition status, so that the aperture of Plasmodesmata is modified. Since October 2022, I joined the systems biology of yield and the innovative breeding groups to work on the EU-funded BREEDIT project which aims at developing a flexible pipeline that combines multiplex gene editing of genes related to growth and yield-traits and different crossing schemes to generate plants with modified traits. Taking advantages of BREEDIT, I am currently using multiplex genome editing to target Cis-regulatory regions of known negative growth regulators. My academic training and research experiences have provided me an excellent background in multiple domains including plant cell biology, molecular biology, genetic engineering and plant development. I had to adapt to different working environments and study different plant models (Tomato, Tobacco, Arabidopsis thaliana, Brachypodium distachyon and Maize) to carry out my work. I have gained expertise with a lot of different techniques such as molecular cloning (Gateway and Goldengate) and tomato transgenesis, multiplex genome editing using CRISPR/Cas9, Cis-regulatory regions targeting with CRISPR/Cas9, GUS staining, phenotyping, in situ hybridization and microscopy.

Vandeputte Wout

Vandeputte Wout - Predoctoral fellow
Joined the group in 2020

I obtained my master’s degree in Biochemistry and Biotechnology at the Ghent University in 2021. During my thesis I worked in the Pauwels lab on the combination of doubled haploid breeding and multiplex gene editing in maize. Later that year, I joined the group of Dirk Inzé and Hilde Nelissen where I worked on the BREEDIT ERC project, with a focus on genotype-phenotype correlation in multiplex edited maize lines. In 2022, I obtained an FWO PhD fellowship and joined the Pauwels lab again. The main focus of my PhD is to improve regeneration in maize with the goal to expand the number of transformable maize inbred lines, while also developing gene editing strategies.